Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation.

نویسندگان

  • H von Canstein
  • Y Li
  • I Wagner-Döbler
چکیده

The long-term performance of bioreactors retaining mercury from contaminated industrial wastewater was analyzed at the laboratory scale, and its response to mechanical perturbations (gas bubbles and shaking) as well as to physical (increased temperature and hydraulic load) and chemical stresses (increased mercury concentration) likely to occur during on site operation was studied. Two packed-bed bioreactors with 80-cm(3) lava chips as biofilm carrier were inoculated with nine Hg(II)-resistant natural isolates of alpha- and gamma-proteobacteria. Chloralkali wastewater containing ionic mercury (3.0 to 9.7 mg/L Hg(2+)), amended with sucrose and yeast extract, flowed through the bioreactors at 160 mL/h. During the 16-month investigation the bioreactors showed no sign of depleted performance in terms of mercury-retaining capacity. After 16 months, both bioreactors still retained 96% of the mercury load. The performance of the bioreactors was sensitive to mechanical perturbations (e.g., sheer forces of gas bubbles). Shifts to higher Hg(2+) inflow concentrations initially decreased the mercury retention efficacy slightly. However, the bioreactors could adapt to Hg(2+) concentrations of up to 7.6 mg/L within several days. Old biofilms were less affected than the younger ones. The performance of the bioreactors was not affected by an increase in temperature up to 41 degrees C and an increased volumetric load (up to 240 mL/h). The bioreactors regained activity spontaneously after the stress had stopped. Recovery could be accelerated by increased nutrient concentration, although this may lead to blocking of the packed bed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حذف بخار جیوه از هوای مطب‎های دندان‌پزشکی با استفاده از یک سامانه پالایش گر مبتنی بر نانوذرات نقره

  Background & objective: Mercury is a toxic and bio-accumulative pollutant that has adverse effects on environmental and human health. There have been a number of attempts to regulate mercury emissions tothe atmosphere. Silver nanoparticles are a number of materials that have highly potential to absorb mercury and formation of mercury amalgam.The aim of this study is removal of mercury va...

متن کامل

Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain.

A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chl...

متن کامل

Synthesis of Activated Carbon from Sugarcane Bagasse and Application for Mercury Adsorption

With the growth and development of chemical plants, the amount of mercury released in wastewater has increased. Mercury in wastewater contains harmful compounds which are hazardous to the human health and living organisms. Therefore, its removal from wastewater is significant. There are various techniques or methods available for removing mercury from aqueous solutions. This study focused upon ...

متن کامل

Synthesis of Activated Carbon from Sugarcane Bagasse and Application for Mercury Adsorption

With the growth and development of chemical plants, the amount of mercury released in wastewater has increased. Mercury in wastewater contains harmful compounds which are hazardous to the human health and living organisms. Therefore, its removal from wastewater is significant. There are various techniques or methods available for removing mercury from aqueous solutions. This study focused upon ...

متن کامل

Equation of State for Mercury

An analytical equation of state by Song and Mason is developed to calculate the PVT properties ofmercury. The equation of state is based on the statistical-mechanical perturbation theory of hard convexbodies and can be written as a fifth-order polynomial in the density. There exists three temperaturedependentparameters in the equation of state; the second virial coefficient, an effective molecu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 74 3  شماره 

صفحات  -

تاریخ انتشار 2001